CYCL[4.2.2]AZINIUM SALTS

Wilhelm Flitsch[¥] und Ernst Rudolf Gesing Organisch-Chemisches Institut der Universität Münster Orléans-Ring 23, D-4400 Münster (Western Germany)

Cycl[4.2.2]azinium salts 3, 9 and 11 have been synthesized and shown to be diatropic.

Butadiene-bridged pentalenes <u>1</u> and ethylene-bridged heptalenes <u>2</u> have been prepared by Hafner et al. and shown to possess only small differences in their properties¹⁾.

Following PMO-theory²⁾ a replacement of the central carbon atom by a nitrogen atom of the ammonium type should result in a drastic splitting of the properties of both π -systems yielding stabilized, diatropic cycl[4.2.2]= azinium salts <u>3</u> and destabilized cycl[4.4.2]azinium salts <u>4</u> for which a diradikaloid character is likely^{3,4)}.

We have synthesized cycl[4.2.2]azinium salts <u>3</u> on two routes and found their properties to be in agreement with the abovementioned expectations^{5,6}. A dihydro derivative of <u>3</u> has been obtained previously which could not be dehydrogenated to a cycl[4.2.2]azinium salt⁷⁾.

<u> $3b^{8},9a^{3}$ </u> is formed in 10 % yield from <u> $5a^{10}$ </u> under Vilsmeier conditions in ethylendichloride at -10[°]C. It cristallizes after treatment with meth= anolic NaClO₄.

We propose an attack of the Vilsmeier salt to the α -position of the pyrrole ring of $5a^{11}$, an allowed electrocyclic reaction of the ion <u>6</u> yield ing the stabilized 3a-azaazulenium ion 7^{12} and a final elimination of di= methylamine as a possible route to <u>3b</u>.

 $3a^{8,9b}$ has been obtained from $5b^{4,8}$ using the same route. According to our expectations the t-butoxycarbonyl group has been removed simultane= ously by acid catalysed fragmentation.

Cycl[4.2.2]azinium salts are also accessible from 3,4-bismethylenepyrrolizinium salts $\underline{8}^{13}$ via cycloaddition reactions. Treatment of $\underline{8b}$ with ethyl-vinylether and N-morpholino-cyclopentene in boiling ethanol yielded $\underline{9a}^{8,9c}$ and $\underline{9b}^{8,9d}$ respectively. No. 36

TABLE

¹H-NMR spectral data of cycl[4.2.2]azinium salts (solvent: trifluor= acetic acid). Chemical shifts are given in ppm downfield from tetramethyl= silane, coupling constants in Hz; m = multiplet.

	H - 1	H-2	H - 3	H-4	н-5 н-6 н-7 н-8	J 12	³ 34
<u>3a</u>	8.85	9.21	9.21	8.85	(m, 9.61 - 9.32)	4.65	4.65
<u>3b</u>	-	9.38	9.10	8.92	(m, 9.65 - 9.38)	-	4.98
<u>9a</u>	8.46	-	8.71	8.63	(m, 9.70-9.26) -	-	4.82
<u>9ь</u>	8.41	-	8.75	8.68	9.27	-	4.67

Reaction of <u>8b</u> with sodium cyclopentadienide under conditions, which have been used earlier for the synthesis of $10a^{13}$ led to the cyclopentanocycl[4.2.2]azin $10b^{8}$. Is has been shown earlier, that <u>10</u> represents a π -system of its own right the properties pointing at close similarities to azulenes¹³⁾.

<u>10b</u> is protonated in trifluoroacetic acid to give a mixture of the $cycl[4.2.2]azinium salts <u>11b</u> and <u>11c</u> in a ratio of <math>1:1^{14}$.

A cristalline salt $\underline{11b,c}^{8}$ separated from the solution after addition of ether the structure of which could not be determined definitely since it forms the abovementioned equilibrium quickly after resolution in trifluoro= acetic acid.

The protonation of $10a^{14}$ and 10b leads to an average downfield shift of 0.8 ppm the shift being greater for the protons of the five-membered rings (1.0 ppm) than for those of the seven-membered ring (0.6 ppm). Taking into consideration the influence of the positive charge in <u>11</u> one can state a similar diatropism for the π -system <u>10</u> and <u>11</u>.

Financial support of this work by the Deutsche Forschungsgemeinschaft is gratefully achnowledged.

REFERENCES AND NOTES

- K. Hafner, J. Schneider, <u>Liebigs Ann. Chem</u>. <u>624</u>, 37 (1959); K. Hafner,
 K.F. Bangert, <u>Liebigs Ann. Chem</u>. <u>650</u>, 98 (1961).
- M.J.S. Dewar, D.C. Dougherty, The PMO-Theory of Organic Chemistry, <u>Plenum</u> Press N.Y. 1975.
- 3) W. Flitsch, U. Krämer, Adv. Heterocycl. Chem. 22, 352 (1978).
- 4) E.R. Gesing, Dissertation, Universität Munster 1978.
- 5) A first derivative <u>11a</u> has been obtained by D. Leaver and D. Farquhar, who investigated the ¹H-NMR-spectra of <u>10a</u> in trifluoroacetic acid. This has been brought to our attention after the completion of this work¹⁴⁾.
- 6) Inspite of several attemps we did not succeed in synthesizing even a derivative of $\underline{4}$. This may be taken as an indirect proof for the proposed properties of the π -system.
- 7) D. Johnson, G. Jones, <u>J.C.S. Perkin I</u>, <u>1972</u>, 844.
- 8) Analytical and spectral data are in agreement with the structure proposed. In case of contamination with $NaClO_4^{(9)}$ the ratio of the experimental C/H/N-values is in agreement with those calculated. The molecular weight of these compounds has been determined by high-resolution mass spectro= metry.
- 9) Mixture with NaClo₁: a) 41 % <u>3b</u>, b) 20 % <u>3a</u>, c) 35.6 % <u>9a</u>, d) 31.8 % <u>9b</u>.
- 10) W. Flitsch, B. Müter, U. Wolf, Chem. Ber. 106, 1993 (1973).
- 11) For a similar formylation of 3a-azaazulene-4-one see: W. Flitsch, A. Gurke, B. Muter, <u>Chem. Ber. 108</u>, 2969 (1975).
- 12) 3a-Azaazulenium salts have been prepared previously and found to be diatropic: W. Flitsch, F. Kappenberg, <u>Chem. Ber. 111</u>, 2407 (1978).
- 13) <u>8a</u> has been prepared from 3H-pyrrolizine in a two step synthesis. Reaction with sodium cyclopentadienide gave <u>10a</u>: D. Leaver, M.A. Jessep, <u>J. Chem</u>. <u>Soc., Chem. Commun</u>. <u>1970</u>, 790. <u>8b</u> can be obtained from the easier acces= sible 1-oxo-1,2-dihydropyrrolizine on a slightly different route: W. Flitsch, J. Koszinowski, P. Witthake, <u>Chem. Ber</u>., in press.
- 14) This follows from an ¹H-NMR-spectroscopic study⁴. The protonation of <u>10a</u> to <u>11a</u> has been investigated previously: D. Leaver, personal communication (Received in Germany 20 April 0979)